RE-EXAMINATION OF THE PM-METHOD

S. YAMANA

Department of Chemistry, Kyoto Gakugei University, Fushimi-ku, Kyoto, Japan

(Received 26 *October* 1964; *in revisedform* 6 *December* 1964)

Abstract—The application of the PM-method¹ has been tested and some cases where it does not apply are discussed.

ACCORDING to the quantum-mechanical theory of dispersion, $\hat{\mathbf{a}}$ the molecular rotation, $[M]_1$ is given by:

$$
[M]_{\lambda} = \{288 \pi^2 N/\lambda^2\} \{(n_{\lambda}^2 + 2)/3\} g_{\lambda} \tag{1}
$$

Here, the various physical constants have their usual meaning. Kirkwood concluded³ that the total gyration parameter, g_{λ} is given by:

$$
g_{\lambda} = g_{\lambda}^{(0)} + g_{\lambda}^{(1)} + \sum_{i} g_{\lambda}^{(i)} \tag{2}
$$

where⁴ the first term $g_1^{(0)}$ represents the dynamic coupling effect which originates from the electronic correlative interactions between different groups. The second term $g_1^{(1)}$ has not been studied in detail and is usually neglected; $g_1^{(i)}$ the third term represents the one-electron effect, i.e., the intrinsic rotation of each group due to the motion of an electron in the asymmetric Hartree field.

By assuming

$$
g_{\lambda} = g_{\lambda}^{(0)} \tag{3}
$$

and combining Eq. 3 with Eq. 1, Kirkwood proposed :

$$
[M]_{\lambda} = \{288 \pi^2 N/\lambda^2\} \{ (n_{\lambda}^2 + 2)/3 \} g_{\lambda}^{(0)}.
$$
 (4)

In the previous paper,¹ this Eq. 4 for the wave-length of Na D-line was applied with some modification of symbols as

$$
[\mu]_{D\,\text{calcd}(XY)}^{20} = \{288\pi^2 N/\lambda^2\} \{ (n^2+2)/3 \} g_{XY}.
$$
 (5)

As the neglect of two terms,

$$
g^{(1)} \quad \text{and} \quad \sum_i g^{(i)},
$$

as well as other factors may cause a discrepancy between the computed and the observed optical rotations, a new adjustable parameter κ has been introduced as in:

$$
\kappa_{\mathbf{X}\mathbf{Y}}[\mu]_{\mathbf{D}\text{ calcd}(\mathbf{X}\mathbf{Y})}^{20} = [\mu]_{\mathbf{D}\text{ obs}(\mathbf{X}\mathbf{Y})}^{20}
$$
 (6)⁶

a J. G. Kirkwood, *J. C/tern. Phys.* 7,139 (1939).

¹S. Yamana, J. *Amer. Chem. Sot. ?&,* 1606 (1964).

g J. G. Kirkwood, *J. Chem. Phys. 5,479 (1937).*

⁴ H. Murakami, *J. Chem. Phys. 27,1231 (1957).*

⁶ S. Yamana, Bull. *Chem. Sot. Japan 31,558 (1958).*

and further, for simplification, κ was factorized as

$$
\kappa_{XY} = \zeta_X \zeta_Y. \tag{7}^5
$$

Thus, from Eqs. 6 and 7,

$$
\zeta_{\mathbf{X}} \zeta_{\mathbf{Y}} [\mu]_{\mathbf{D} \text{ calcd}(\mathbf{X}\mathbf{Y})}^{20} = [\mu]_{\mathbf{D} \text{ obs}(\mathbf{X}\mathbf{Y})}^{20}
$$
 (8)¹

Equation 8 is the fundamental formula in the PM-method which relates the Kirkwood's term, $[\mu]_{D \text{ calcd},\mathbf{x}\mathbf{y}}^{20}$ to the partial molecular rotation, $[\mu]_{D \text{ obs},\mathbf{x}\mathbf{y}}^{20}$ and it has been shown that Eq. $\bar{8}$ is applicable in a number of cases.¹ It is probable, however, that in spite of introduction of κ - or ζ -coefficients the result of neglecting $g_\lambda^{(1)}$ + $\sum g_\lambda^{(i)}$

cannot be overcome completely and, in some cases, causes a discrepancy between the computed and the observed optical rotations. Consequently, the PM-method has been re-examined (especially Eqs. 6 and 7). The compounds and their observed molecular rotations are listed in Tables 1, 2 and 3.

al: alcoholic solution.

TABLE 2

Cyclopentane derivative	Unit group	$[M]_D^{10}$	Ref.
(-)-trans-1,2-Cyclopentanediol	$[(OH)^{1\beta}, (OH)^{2\alpha}]$	-34.3° ¹¹	16
(+)-trans-2-Aminocyclopentanol	$[(OH)1α, (NH2)2β]$	$38 - 6^{\circ}$	17
(-)-trans-3-Methylcyclopentanol	$[(OH)^{1\beta}, (CH_n)^{3\alpha}]$	-6.5°	18
(+)-trans-1,3-Dimethylcyclopentane	$[(CH3)1β, (CH3)3α]$	2.3°	19

w: water solution.

- ⁶ Some of $[M]_D^{0}$ values were assumed from $[M]_D$ which had been observed in the neighbourhood of 20".
- ⁷ N. A. B. Wilson and J. Read, *J. Chem. Soc.* 1269 (1935).
- ⁸ R. M. Godchot and M. Mousseron, C.R. Acad. Sci., Paris 194, 981 (1932).
- ⁹ F. J. Zeelen, M. E. Kronenberg and E. Havinga, *Rec. Trav. Chim.* 77, 674 (1958).
- ¹⁰ G. A. C. Gough, H. Hunter and J. Kenyon, J. Chem. Soc. 2052 (1926).
- ¹¹ For lack of data, $\{x\}_p$ is computed by applying the data of α l₅₄₆ and $\{x\}_q$, to Drude's single term Eq., $[\alpha]_{\lambda} = A/(\lambda^2 - \lambda_0^3)$
- ¹² M. Mousseron and P. Froger, *Bull. Soc. Chim. Fr.* 14, 843 (1947).
- ¹⁸ D. S. Noyce and D. B. Denny, *J. Amer. Chem. Soc.* 74, 5912 (1952).
- ¹⁴ The author expresses his great thanks to Prof. James H. Brewster (Purdue University) for his experiments to re-confirm the absolute configuration of $(+)$ -trans-1,3-dimethylcyclohexane.
- lb M. Mousseron, Bull. Sot. *Chim. Fr. 218* (1946).
- ¹⁶ M. Mousseron and R. Richaud, *Bull. Soc. Chim. Fr.* 643 (1946).
- ¹⁷ M. Mousseron and R. Granger, *Bull. Soc. Chim. Fr.* 850 (1947). la M. Godchot, G. Cauquil and M. R. Calas, Bull. Sot. *Chim. Fr. 6,1358* (1939).
- lo S. F. Birch and R. A. Dean, *J. Chem. Sm. 2477 (1953).*
-

In order to simplify computations, molecular models are assumed as follows; The cyclohexane-ring exists only in Cl conformation (i.e. the number of equatorial groups becomes as many as possible in Tables 1, 2 and 3) and the cyclopentane-ring plane is a flat regular pentagon and the length of its side is 1.54 Å . The angle, $109^{\circ}28'$, between the two bonds which project up and down the cyclopentane-ring from the same ring carbon atom is bisected by the cyclopentane-ring plane.²³ The characteristics used in this article are as below:

Bond length: C-C bond is 1.54 Å ; C-O bond is 1.42 Å ; C-N bond is 1.47 Å ; C-Cl bond is 1.78 Å. Mean polarizability, α^{25} : α of OH group is 1.04×10^{-24} cc; α of NH₂ group is 1.79 \times 10⁻²⁴ cc; α of Cl atom is 2.36 \times 10⁻²⁴ cc; α of CH₃ group is 2.27 \times 10⁻²⁴ cc. Anisotropy ratio, β^{28} : β of OH group is 0.35; β of NH, group is O.10; β of Cl atom is 0.33; β of CH₃ group is 0.35. Refractive index, n;n of cyclohexane derivative is n_i ; *n* of cyclopentane derivative is n_i ; *n* of carbohydrate is n_i ; *n* of menthol-like compound is *n4.*

The $[\mu]_{\text{D calcd}(XY)}^{20}$ {3/(n² + 2)} values are calculated by Eq. 5.¹ These computed values are given in Tables 4, 5 and 6.

IN CYCLOHEXANE DERIVATIVE								
	C1 Conformation							
		Y۴	Y4a	γø	Yм	٧ıβ	\mathbf{V}^{2a}	
	$X^{1\alpha}$	Ω	0	G	0	Ω	E	
	$X^{1\beta}$	0	0	0	$-F$	Е	$-E$	
x	Y		F#		F27			G^{27}
OH	OН		11.73(6.50)		1.88(1.66)			1.88(1.66)
OН	NH.		5.75(3.03)		0.93(0.79)			0.92(0.80)
OН	СI		17.50(11.29)		5.38(3.70)			$2-87(2-79)$
OН	CH.		25.30(13.35)		4.20(3.70)			4.04(3.34)
NH,	Cl		8.60(5.48)		2.63(1.76)			1.42(1.38)
NH,	CH.		12.39(6.43)		2.06(1.76)			2.00(1.66)
Cl	CH,		38.15(23.81)		6.38(6.22)			11-53 (7-44)
CH.	CH.		54.54(27.64)		9.02(7.45)			9.02(7.45)

TABLE 4. $[\mu]_{D\text{ calculate}}^{10}$ _{calcd(xy)} $(3/(n_1^2 + 2))$, $(=(X) \times (Y))$, CAUSED BY THE **DYNAMIC COUPLING EFFECT BETWEEN TWO UNIT GROUPS, x AND Y,**

²⁰ Owing to the steric repulsion of (NH₂)²⁴, the symmetrical type is only one possible type of the **internal conformation of the isopropyl group. In this case, the following simplification may be introduced,**

$$
(\text{iso-}C_{\mathbf{3}}H_{7})^{\mathbf{4}\alpha} = (\text{CH}_{\mathbf{3}})^{\mathbf{4}\alpha} + (\text{CH}_{\mathbf{3}})^{\alpha\mathbf{3}\cdot\mathbf{4}} + (\text{CH}_{\mathbf{3}})^{\alpha\mathbf{5}\cdot\mathbf{6}} \quad \text{(cf. 22)}.
$$

- ²¹ J. Read and R. G. Johnston, *J. Chem. Soc.* 226 (1934).
- **aa S. Yamana, Bull.** *Chem. Sue. Japan 34,* **1414 (1961).**
- **a8 Strictly speaking, the cyclopentane-ring is not a perfectly flat plane (ref. 24). a4 K. S. Pitzer and W. E. Donath,** *J. Amer. Chem. Sot.* **81,3213 (1959).**
- ²⁴ K. S. Pitzer and W. E. Donath, *J. Amer. Chem. Soc.* 81, 3213 (1959).
²⁵ Landolt Börnstein, *Physikalisch-Chemische Tabellen* Hw. II. p. 985.
-
- **w Landolt Barnstein,** *Physlkalisch-Chemische Tubellen* **5th Ed., Eg. LI, p.** *90, 91;* **Eg. III, p. 1205. *' Given in parentheses are the values computed by assuming the position of the optical centre of**
- United in parentiesses are the values computed by assuming the position of the optical centre of unit groups as follows: O-atom (in OH group), N-atom (in NH₂ group), Cl-atom, C-atom (in CH₂ group).

TWO UNIT GROUPS, X AND Y, IN CYCLOPENTANE DERIVATIVE						
		Y¤β	$Y^{3\alpha}$	Y۶β	Y2a	
	X^{1a}	Q	0	P	0	
	$X^{1\beta}$	0	-0	0	— P	
x	Y		P27		O21	
OH	OН		8.35(4.43)		1.68(1.09)	
OH	NH,		4.09(2.12)		0.82(0.52)	
OH	Cl		13.58(7.69)		3.04(2.00)	
OH	CH ₂		18.03(9.02)		3.63(2.26)	
	CH, CH,		38.90(18.42)		7.87(4.69)	

TABLE 5. $[\mu]_{D \text{ calcd}(\chi Y)}^{30}$ $(3/(n_s^2 + 2))$, $(=(X) \times (Y))$, CAUSED BY THE DYNAMIC COUPLING EFFECT BRTWEEN

TABLE 6. $[\mu]_{D \text{ calc}(XY)}^{\text{10}}(3/(n_4^2 + 2)), (= (X) \times (Y)),$ CAUSED BY THE **DYNAMIC COUPLINU EFFECT BETWEEN** *ANY TWO* **MEMBERS OF UNIT GROUPS IN (+)-NEOMENTHYLAMINE²²**

	$(CH_a)^{at}$		$(CH_a)^{\alpha\beta\cdot\alpha}$ $(CH_a)^{\alpha\beta\cdot\alpha}$ $(CH_a)^{4\alpha}$ $(NH_a)^{3\alpha}$ $(CH_a)^{1\beta}$			
ch.R	0	$-\bm{D}$	D	0	0	0
(CH _n) ¹	0	$4-41$	-4.41	0	-2.00	
$(NH_n)^{3\alpha}$	0	-2.00	1.55	12.39		
$(CH_a)^{4\alpha}$	0	0	0			
$(CHa)α8-a$	0	0				
(CH _n) ^{αθ}	0		0			
$(CHa)at$ 'f		0	0			

By using Table 4, the value of $\kappa_{\text{OH,OH}}$ in the cyclohexane derivative is computed as follows: $[M]_{\text{D}}^{20}$ of (-)-trans-1,2-cyclohexanediol, $-54.0^{\circ} \equiv \sum [\mu]_{\text{Doha/TV}}^{20}$ of $(-)$ -trans-1,2-cyclohexanediol = $(OH)^{1\beta} \Lambda (OH)^{2\alpha} = (OH)^{1\beta} \times (OH)^{2\alpha} \kappa_{OH,OH}$ $2)/3$ } = -11.73 $\kappa_{\text{OH, OH}}((n_1^2 + 2)/3)$

$$
\therefore \kappa_{\text{OH, OH}} = 4.6036\{3/(n_1^2+2)\}.
$$
 (9)

Similarly, by using Tables 4, 5 and 6, the values of all κ 's are computed and given in Table 7.

It is apparent from Table 7, that the value of κ_{XY} of Eq. 6 is independent of the compound and is almost constant in a pair of definite groups, X and Y. Thus, it can be said that, in addition to the bond length, the dipole moment of a bond, etc., the value of κ_{XY} is useful in the determination of organic structure (i.e. orientation or conformation).

$\kappa_{\overline{XY}}$	Cyclohexane derivative	Cyclopentane derivative	Pyranose	Menthol-like compound
$k_{\text{OH,OH}}$	4.6036	4.1078	4.518328	4.2796**
$\kappa_{\text{OH,NH}_2}$	8-0522	9.4377		
κ OH.CI	са. 3-0743			
$\kappa_{\text{OH,OH}}$	1.7352	1.7906	1.5440**	1.5066 ³²
$\kappa_{\text{HE}_2,\text{C1}}$	$6 - 8953$			
$K_{\text{NH}_2,\text{CH}_2}$	2.3487_{81}			2.3642^{30}
$K_{\text{CH}_3,\text{CH}_2}$	-0.1552	-0.2922		

TABLE 7. $\kappa_{\pi\pi}\{(n^2 + 2)/3\}$

w: water solution, al: alcohofic solution.

Next, if Eq. 7 is correct, the values in the first column of Table 7 can be related to the ζ -coefficients as follows:

$$
4.6036\{3/(n_1^2+2)\} = \zeta_{\text{OH}}^2 \tag{10}
$$

$$
8.0522\{3/(n_1^2+2)\} = \zeta_{\text{OH}}\zeta_{\text{NH}}.\tag{11}
$$

$$
\text{ca. } 3 \cdot 0743 \{3/(n_1^2 + 2)\} = \zeta_{\text{OH}} \zeta_{\text{Cl}} \tag{12}
$$

$$
1.7352\{3/(n_1^2+2)\} = \zeta_{\text{OH}}\zeta_{\text{CH}_3} \tag{13}
$$

$$
6.8953\{3/(n_1^2+2)\} = \zeta_{\rm NH_2}\zeta_{\rm Cl} \tag{14}
$$

$$
2.3487\{3/(n_1^2+2)\} = \zeta_{\text{NH}} \zeta_{\text{CH}} \tag{15}
$$

$$
-0.1552\{3/(n_1^2+2)\} = \zeta_{\text{CH}_2}^2. \tag{16}
$$

From Eq. 10 ,

$$
\zeta_{\text{OH}} = 2.1456 \{3/(n_1^2 + 2)\}^{1/2} \tag{10'}
$$

By substituting Eq. 10' in Eqs. 11, 12 and 13, respectively,

$$
\zeta_{\text{NH}_\bullet} = 3.7529 \{ 3/(n_1^2 + 2) \}^{1/2} \tag{11'}
$$

$$
\zeta_{\text{Cl}} = \text{ca. } 1.4328\{3/(n_1^2+2)\}^{1/2} \tag{12'}
$$

$$
\zeta_{\text{CH}_*} = 0.8087 \{3/(n_1^2 + 2)\}^{1/2}.
$$
 (13')

From Eqs. 11' and 12',

$$
\zeta_{\rm NH_2}\zeta_{\rm Cl}=\text{ca. } 5\cdot 3772\{3/(n_1^2+2)\}.
$$

This value is of the same order in Eq. 14, $6.8953\{3/(n_1^2 + 2)\}$. Moreover, from Eqs. 11' and 13', the value of $\zeta_{\text{NH}_4}\zeta_{\text{CH}_4}$ is computed as 3.0350{3/(n₁² + 2)} which is of the

²⁸ S. Yamana, *Bull. Chem. Soc. Japan* 35, 1421 (1962).

a* S. Yamana, Bull. Ckm. Sot. *Japn 35,* **1269 (1962).**

²⁰ By using Tables 3 and 6 and Ref. 20,
$$
[M]_D^{10}
$$
 of (+)-ncomenthylamine, $23.5 \equiv \sum [\mu]_{D \text{obs}(XY)}^{10}$

of (+)-neomenthylamine % (CH,)l@A(NH,)aa + (CHJlflA(CHp + (CH\$\$&-I,)~~d .- (CH3'@A(CH,)a"*" -L (CH,)'@Ach.R + (NH,)'=A(CH,)'= f (NH#'"A(CHa)"'*d - (NH_a)² + (CH_a)² + *A***(CH_a)² + ^{***A***}₂ +** *ACHA***₂ +** *A***² +** *I***² +** *A***² +** *A* $+$ $\frac{(CH)^{86.4} \text{J} \cdot (CH)^{82.6} \cdot \frac{1}{4} \cdot (CH)^{86.4} \cdot \frac{1}{4} \cdot (CH)^{86.6} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1$ **0 +** $-$ 4-41 $\ell(m^2 + 2)/3$ bca, + 4-41 $\ell(m^2 + 2)/3$. $1.55/(n^2 + 2)/3$ $\frac{m^2}{2}$ $\frac{m^2}{2}$ $\frac{2.00/(n^2 + 2)/2}{}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{m^2}{2}$ $\frac{m^2}{$ $= 9.94\{(n_4^2 + 2)/3\}_{K_{\rm NH_2,CH_3}}$ \therefore . \sim 2.3642{31}(\pm 1 2))

$$
\kappa_{\rm NH_2,CH_3} \simeq 2.3642(3/(n_{\rm A}^2+2))
$$

same order as that in Eq. 15, $2.3487\{3/(n_1^2 + 2)\}\.$ These facts indicate that Eq. 7 may be applied and accordingly should be rewritten as

$$
\kappa_{XY} = \zeta_X \zeta_Y. \tag{7}
$$

The values of ζ_1 may, of course, vary according to the type of compounds containing the unit group i. One explanation for the value of $\kappa_{\mathbf{x} \mathbf{y}}$ being nearly but not exactly equal to the value of $\zeta_{\mathbf{X}} \zeta_{\mathbf{Y}}$ may be due to the incorrect assumption that all the compounds exist in only the Cl conformation. At any rate, the rightness of Eqs. 6 and 7' indicate the availability of the PM-method. On the other hand, from Eq. 13',

$$
\zeta_{\text{CH}_3}^2 = [0.8087\{3/(n_1^2+2)\}^{1/2}]^2 = 0.6540\{3/(n_1^2+2)\}.
$$
 (17)

This value differs from that given in Eq. 16, $-0.1552\{3/(n_1^2+2)\}\text{, and therefore:}$

$$
\kappa_{\text{CH}_3,\text{CH}_3} \neq \zeta_{\text{CH}_3}^2. \tag{18}
$$

It is, therefore, apparent that the PM-method is not generaIly applicable.

The case where the PM-method does not apply

 $(+)$ -cis-3-methylcyclohexanol has no plane or centre of symmetry and accordingly it is optically active. $([M]_D = 2 \cdot 2^{\circ} {}^{31})$. Both of its $\sum_{X,Y} [\mu]_{D \text{ calcd}(XY)}^{20}$ and $\sum_{X,Y} [\mu]_{D \text{ obs}(XY)}^{20}$ are, however, computed as zero. This discrepancy between the observed and the computed values may be due to the neglect of $\{g^{(1)} + \sum g^{(i)}\}$ in Eq. 2. But the case of paix values may be due to the hegiest of $(8 + 2)$
Eq. 18 is somewhat different.

Eq. 18 is somewhat different.
Being apparent in Table 1, $\sum_{\mathbf{X}, \mathbf{Y}} [\mu]_{\text{D} \text{ obs}(XY)}^{20}$ of (+)-trans-1,3-dimethylcyclohexane,

$$
I = (CH_3)^{1\beta} \lambda (CH_3)^{3\alpha} {}^{31} = (CH_3)^{1\beta} \times (CH_3)^{3\alpha} \{(n_1{}^2 + 2)/3\} = -9 \cdot 02 \{(n_1{}^2 + 2)/3\} \zeta_{CH_3}^2 {}^{32}
$$
\n(19)

When using Eq. 17, the value of

$$
\sum_{X,Y}\ [\mu]^{20}_{D\ \mathrm{obs}(XY)}
$$

of $(+)$ -trans-1,3-dimethylcyclohexane in Eq. 19 becomes -5.9 which is quite different from the observed value of $[M]_D^{20}$, 1.4.⁸¹ This discrepancy between the computed and the observed values is too large to be explained by the neglect of

$$
\{g^{(1)} + \sum_i g^{(i)}\}
$$

in Eq. 2, and accordingly the following explanation should be considered.

The CH, **group** has no hydrogen bonding force and moreover its volume is fairly large. In $(+)$ -trans-1,3-dimethylcyclohexane, therefore, each one of the two CH₃

I

I1 **cf. Table 1.** ²² Table 4 is used. groups repulses the other H atoms in the molecule. Particularly, the axial $CH₃$ group (i.e. $(\text{CH}_3)^{3\alpha}$) repulses the H^{1 α}-atom fairly strongly which is under the butressing effect of the $(CH_3)^{1\beta}$ and this repulsion may cause some degree of distortion of the ring.³³ In this case, the cyclane ring is not symmetrical as regards to one or both of the two CH₃ groups and the partial rotation, $[\mu]_{D \text{ obs}}^{20}$ due to the dynamic coupling effect between the distorted ring and CH₃ group may have a plus value. This can be the principal reason for the reversion of the sign of optical rotation as is also the case with $(+)$ -trans-1,3-dimethylcyclopentane.

³³ R. Bentley, *J. Amer. Chem. Soc.* 82, 2811 (1960).