RE-EXAMINATION OF THE PM-METHOD

S. YAMANA

Department of Chemistry, Kyoto Gakugei University, Fushimi-ku, Kyoto, Japan

(Received 26 October 1964; in revised form 6 December 1964)

Abstract—The application of the PM-method¹ has been tested and some cases where it does not apply are discussed.

ACCORDING to the quantum-mechanical theory of dispersion,² the molecular rotation, $[M]_{\lambda}$ is given by:

$$[M]_{\lambda} = \{288 \ \pi^2 N / \lambda^2\} \{ (n_{\lambda}^2 + 2) / 3 \} g_{\lambda}$$
(1)

Here, the various physical constants have their usual meaning. Kirkwood concluded⁸ that the total gyration parameter, g_{λ} is given by:

$$g_{\lambda} = g_{\lambda}^{(0)} + g_{\lambda}^{(1)} + \sum_{i} g_{\lambda}^{(i)}$$
⁽²⁾

where⁴ the first term $g_{\lambda}^{(0)}$ represents the dynamic coupling effect which originates from the electronic correlative interactions between different groups. The second term $g_{\lambda}^{(1)}$ has not been studied in detail and is usually neglected; $g_{\lambda}^{(1)}$ the third term represents the one-electron effect, i.e., the intrinsic rotation of each group due to the motion of an electron in the asymmetric Hartree field.

By assuming

$$\mathbf{g}_{\lambda} \coloneqq \mathbf{g}_{\lambda}^{(0)} \tag{3}$$

and combining Eq. 3 with Eq. 1, Kirkwood proposed:

$$[M]_{\lambda} = \{288 \ \pi^2 N/\lambda^2\}\{(n_{\lambda}^2 + 2)/3\}g_{\lambda}^{(0)}.$$
 (4)

In the previous paper,¹ this Eq. 4 for the wave-length of Na D-line was applied with some modification of symbols as

$$[\mu]_{\text{D calcd}(XY)}^{20} = \{288\pi^2 N/\lambda^2\}\{(n^2+2)/3\}g_{XY}.$$
 (5)

As the neglect of two terms,

$$g^{(1)}$$
 and $\sum_i g^{(i)}$,

as well as other factors may cause a discrepancy between the computed and the observed optical rotations, a new adjustable parameter κ has been introduced as in:

$$\kappa_{XY}[\mu]_{D \text{ calcd}(XY)}^{20} = [\mu]_{D \text{ obs}(XY)}^{20}$$
(6)⁵

⁸ J. G. Kirkwood, J. Chem. Phys. 7, 139 (1939).

¹ S. Yamana, J. Amer. Chem. Soc. 86, 1606 (1964).

^a J. G. Kirkwood, J. Chem. Phys. 5, 479 (1937).

⁴ H. Murakami, J. Chem. Phys. 27, 1231 (1957).

⁵ S. Yamana, Bull. Chem. Soc. Japan 31, 558 (1958).

and further, for simplification, κ was factorized as

ζ.

$$\kappa_{XY} = \zeta_X \zeta_Y. \tag{7}^5$$

Thus, from Eqs. 6 and 7,

$${}_{\mathbf{X}}\zeta_{\mathbf{Y}}[\mu]^{20}_{\mathrm{D}\,\mathrm{calcd}(\mathbf{X}\mathbf{Y})} = [\mu]^{20}_{\mathrm{D}\,\mathrm{obs}(\mathbf{X}\mathbf{Y})} \tag{8}^{1}$$

Equation 8 is the fundamental formula in the PM-method which relates the Kirkwood's term, $[\mu]_{D \text{ calcd}_{(XY)}}^{20}$ to the partial molecular rotation, $[\mu]_{D \text{ obs}_{(XY)}}^{20}$ and it has been shown that Eq. 8 is applicable in a number of cases.¹ It is probable, however, that in spite of introduction of κ - or ζ -coefficients the result of neglecting $g_{\lambda}^{(1)} + \sum g_{\lambda}^{(1)}$

cannot be overcome completely and, in some cases, causes a discrepancy between the computed and the observed optical rotations. Consequently, the PM-method has been re-examined (especially Eqs. 6 and 7). The compounds and their observed mole-cular rotations are listed in Tables 1, 2 and 3.

TABLE	1
-------	---

Cyclohexane derivative	Unit group	[<i>M</i>] ⁸⁰ 6	Ref.
(-)-trans-1,2-Cyclohexanediol	[(OH) ^{1β} , (OH) ^{3α}]	- 54·0°	7
(-)-trans-2-Aminocyclohexanol	[(OH) ^{1β} , (NH ₂) ^{2α}]	-46·3°	8
(-)-trans-2-Chlorocyclohexanol	[(OH ¹ ^β , Cl ² ^α]	ca 53.8°	9
(-)-trans-2-Methylcyclohexanol	$[(OH)^{1\beta}, (CH_{1})^{2\alpha}]$	43·9°	10
(-)-trans-2-Chloro-1-aminocyclohexane	$[(NH_2)^{1\beta}, Cl^{2\alpha}]$	5 9•3° 11	12
(-)-trans-2-Methyl-1-aminocyclohexane	$[(NH_2)^{1\beta}, (CH_2)^{2\alpha}]$	$-29.1^{\circ}_{al}^{11}$	12
(+)-cis-3-Methylcyclohexanol	[(OH) ¹ ^{\$} , (CH ₂) ³ ^{\$}]	2·2°	13
(+)-1,3-Dimethylcyclohexane	[(CH ₃) ^{1β} , (CH ₃) ^{3α}] ¹⁴	1·4°	15

al: alcoholic solution.

TABLE 2

Cyclopentane derivative	Unit group	[M] ⁸⁰ 6	Ref.
(-)-trans-1,2-Cyclopentanediol	[(OH) ^{1β} , (OH) ^{2α}]	-34-3°*11	16
(+)-trans-2-Aminocyclopentanol	[(OH) ¹ ^a , (NH ₂) ² ^β]	38-6°	17
(-)-trans-3-Methylcyclopentanol	$[(OH)^{1\beta}, (CH_3)^{3\alpha}]$	—6·5°	18
(+)-trans-1,3-Dimethylcyclopentane	[(CH ₃) ¹ ^β , (CH ₃) ³ ^α]	2·3°	19

w: water solution.

- ⁶ Some of $[M]_D^{30}$ values were assumed from $[M]_D$ which had been observed in the neighbourhood of 20°.
- 7 N. A. B. Wilson and J. Read, J. Chem. Soc. 1269 (1935).
- * R. M. Godchot and M. Mousseron, C.R. Acad. Sci., Paris 194, 981 (1932).
- * F. J. Zeelen, M. E. Kronenberg and E. Havinga, Rec. Trav. Chim. 77, 674 (1958).
- ¹⁰ G. A. C. Gough, H. Hunter and J. Kenyon, J. Chem. Soc. 2052 (1926).
- ¹¹ For lack of data, $[\alpha]_D$ is computed by applying the data of $[\alpha]_{546}$ and $[\alpha]_{576}$ to Drude's single term Eq., $[\alpha]_{\lambda} = A/(\lambda^2 \lambda_0^2)$
- ¹³ M. Mousseron and P. Froger, Bull. Soc. Chim. Fr. 14, 843 (1947).
- ¹³ D. S. Noyce and D. B. Denny, J. Amer. Chem. Soc. 74, 5912 (1952).
- ¹⁴ The author expresses his great thanks to Prof. James H. Brewster (Purdue University) for his experiments to re-confirm the absolute configuration of (+)-trans-1,3-dimethylcyclohexane.
- ¹⁵ M. Mousseron, Bull. Soc. Chim. Fr. 218 (1946).
- ¹⁶ M. Mousseron and R. Richaud, Bull. Soc. Chim. Fr. 643 (1946).
- ¹⁷ M. Mousseron and R. Granger, Bull. Soc. Chim. Fr. 850 (1947).
- ¹⁹ M. Godchot, G. Cauquil and M. R. Calas, Bull. Soc. Chim. Fr. 6, 1358 (1939).
- ¹⁹ S. F. Birch and R. A. Dean, J. Chem. Soc. 2477 (1953).

710

TABLE 3					
Menthol-like compound	Unit group	[<i>M</i>] _D	Ref.		
(+)-Neomenthylamine	$[(CH_8)^{1\beta}, (NH_8)^{8\alpha}, (iso-C_8H_7)^{4\alpha}, ch.R]^{30}$	23·5°	21		

In order to simplify computations, molecular models are assumed as follows; The cyclohexane-ring exists only in Cl conformation (i.e. the number of equatorial groups becomes as many as possible in Tables 1, 2 and 3) and the cyclopentane-ring plane is a flat regular pentagon and the length of its side is 1.54 Å. The angle, $109^{\circ}28'$, between the two bonds which project up and down the cyclopentane-ring from the same ring carbon atom is bisected by the cyclopentane-ring plane.²³ The characteristics used in this article are as below:

Bond length: C—C bond is 1.54 Å; C—O bond is 1.42 Å; C—N bond is 1.47 Å; C—Cl bond is 1.78 Å. Mean polarizability, α^{25} : α of OH group is 1.04 × 10⁻²⁴ cc; α of NH₂ group is 1.79 × 10⁻²⁴ cc; α of Cl atom is 2.36 × 10⁻²⁴ cc; α of CH₃ group is 2.27 × 10⁻²⁴ cc. Anisotropy ratio, β^{28} : β of OH group is 0.35; β of NH₂ group is 0.10; β of Cl atom is 0.33; β of CH₃ group is 0.35. Refractive index, *n*:*n* of cyclohexane derivative is n_1 ; *n* of cyclopentane derivative is n_2 ; *n* of carbohydrate is n_3 ; *n* of menthol-like compound is n_4 .

The $[\mu]_{D \text{ calcd}(XY)}^{20} \{3/(n^2 + 2)\}$ values are calculated by Eq. 5.¹ These computed values are given in Tables 4, 5 and 6.

		IN C	YCLOHEX	ANE I	DERIVAT	IVE		
	C1 Conformation							
		Y ^{4β}	Y⁴α	Υ ^{sβ}	Y³a	Y²₿	Y²α	
	$X^{1\alpha}$	0	0	G	0	0	E	
	X ^{ιβ}	0	0	0	-F	E	-E	
х	Y	L	E*7		F ²⁷		(<u>727</u>
ОН	ОН	11.73	(6.50)	1	.88 (1.	66)	1.88	(1.66)
OH	NH _s	5.75	(3.03)	()•93 (0+	79)	0.92	(0.80)
ОН	Cl	17.50	(11-29)	:	5·38 (3·	70)	2.87	(2.79)
OH	CH ₃	25-30	(13-35)	4	·20 (3·	70)	4.04	(3.34)
NH	Cl	8∙60	(5.48)	2	ŀ63 (1·	76)	1.42	(1-38)
NH ₂	CH3	12.39	(6.43)	2	2.06 (1.1	76)	2.00	(1.66)
Cl	CH ₃	38-15	(23.81)	6	5·38 (6·2	22)	11-53	(7.44)
CH.	CH ₃	54-54	(27.64)	9)·02 (7·4	45)	9.02	(7.45)

TABLE 4. $[\mu]_{D \ calcd(XY)}^{80} \{3/(n_1^2 + 2)\}, (= (X) \times (Y)), CAUSED BY THE DYNAMIC COUPLING EFFECT BETWEEN TWO UNIT GROUPS, X AND Y,$

²⁰ Owing to the steric repulsion of (NH₂)^{3α}, the symmetrical type is only one possible type of the internal conformation of the isopropyl group. In this case, the following simplification may be introduced,

$$(iso-C_{3}H_{7})^{4\alpha} = (CH_{3})^{4\alpha} + (CH_{3})^{\alpha \cdot d} + (CH_{3})^{\alpha \cdot d}$$
 (cf. 22).

²¹ J. Read and R. G. Johnston, J. Chem. Soc. 226 (1934).

- ²² S. Yamana, Bull. Chem. Soc. Japan 34, 1414 (1961).
- ³³ Strictly speaking, the cyclopentane-ring is not a perfectly flat plane (ref. 24).
- ²⁴ K. S. Pitzer and W. E. Donath, J. Amer. Chem. Soc. 81, 3213 (1959).
- ²⁶ Landolt Börnstein, Physikalisch-Chemische Tabellen Hw. II. p. 985.

²⁶ Landolt Börnstein, Physikalisch-Chemische Tabellen 5th Ed., Eg. II, p. 90, 91; Eg. III, p. 1205.

³⁷ Given in parentheses are the values computed by assuming the position of the optical centre of unit groups as follows: O-atom (in OH group), N-atom (in NH₂ group), Cl-atom, C-atom (in CH₃ group).

TWO UNIT GROUPS, X AND Y, IN CYCLOPENTANE DERIVATIVE							
		Y³β	Υ ^{3α}	Y ² [#]	Y ² α		
	X ^{1α}	Q	0	P	0		
	X¹₿	0	-Q	0	- P		
X	Y		P27		Q27		
он	он		8-35 (4-43	3)	1.68 (1.09)		
ОН	NH	9	4.09 (2.12	2)	0.82 (0.52)		
он	Cl	1	13-58 (7-69))	3.04 (2.00)		
ОН	CH	. 1	18·03 (9·02	2)	3.63 (2.26)		
СН,	CH	. 3	8-90 (18-42	2)	7.87 (4.69)		

TABLE 5. $[\mu]_{D\ calcd(XY)}^{80}{3/(n_s^2+2)}$, $(=(X) \times (Y))$, Caused by the dynamic coupling effect between two unit groups, X and Y, in cyclopentane

TABLE 6. $[\mu]_{D}^{90} calcd(XY) \{3/(n_4^2 + 2)\}, (= (X) \times (Y)),$ caused by the dynamic coupling effect between any two members of unit groups in (+)-neomenthylamine²²

	(CH ₂) ^{48.}	(CH ₃) ^{28·e}	(CH₂) ^{α8⋅d}	(CH ₂) ⁴	(NH2)3a	(CH ₂) ¹ ^β
ch.R	0	-D	D	0	0	0
(CH _z) ¹ ^β	0	4.41	- 4 ·41	0	- 2 ·00	
(NH _a) ³⁴	0	-2·00	1.55	1 2·39		
(CH ₈) ^{4α}	0	0	0			
(CH₃) ^{α8⋅d}	0	0				
(CH ₃) ^{α8•e}	0		0			
(CH _a) ^{as} .t		0	0			

By using Table 4, the value of $\kappa_{OH,OH}$ in the cyclohexane derivative is computed as follows: $[M]_D^{20}$ of (-)-trans-1,2-cyclohexanediol, $-54 \cdot 0^\circ \equiv \sum_{X,Y} [\mu]_{D \text{ obs}(XY)}^{20}$ of (-)-trans-1,2-cyclohexanediol = $(OH)^{1\beta} \lambda (OH)^{2\alpha} = (OH)^{1\beta} \times (OH)^{2\alpha} \kappa_{OH,OH} \{(n_1^2 + 2)/3\} = -11 \cdot 73 \kappa_{OH,OH} \{(n_1^2 + 2)/3\}$

$$\therefore \kappa_{\rm OH,OH} = 4.6036\{3/(n_1^2 + 2)\}.$$
 (9)

Similarly, by using Tables 4, 5 and 6, the values of all κ 's are computed and given in Table 7.

It is apparent from Table 7, that the value of κ_{XY} of Eq. 6 is independent of the compound and is almost constant in a pair of definite groups, X and Y. Thus, it can be said that, in addition to the bond length, the dipole moment of a bond, etc., the value of κ_{XY} is useful in the determination of organic structure (i.e. orientation or conformation).

ĸ _{XY}	Cyclohexane derivative	Cyclopentane derivative	Pyranose	Menthol-like compound
KOH.OH	4.6036	4·1078	4.518328	4.2796**
KOH.NH.	8.0522	9.4377		
KOH.CI	ca. 3.0743			
KOH.CH.	1.7352	1.7906	1.5440**	1.506632
KNHa.Cl	6-8953			
KNH9.CH.	2·3487 ₈₁			2.364230
KCH3, CH3	-0.1552	-0 ·2922		

TABLE 7. $\kappa_{xx}\{(n^2 + 2)/3\}$

w: water solution, al: alcoholic solution.

Next, if Eq. 7 is correct, the values in the first column of Table 7 can be related to the ζ -coefficients as follows:

$$4.6036\{3/(n_1^2+2)\} = \zeta_{\rm OH}^2 \tag{10}$$

$$8.0522\{3/(n_1^2+2)\} = \zeta_{OH}\zeta_{NH_2}$$
(11)

ca.
$$3.0743\{3/(n_1^2+2)\} = \zeta_{OH}\zeta_{CI}$$
 (12)

$$1.7352\{3/(n_1^2+2)\} = \zeta_{OH}\zeta_{CH_a}$$
(13)

$$6.8953\{3/(n_1^2+2)\} = \zeta_{\rm NH_2}\zeta_{\rm Cl} \tag{14}$$

$$2.3487\{3/(n_1^2+2)\} = \zeta_{\rm NH_s}\zeta_{\rm CH_s}$$
(15)

$$-0.1552\{3/(n_1^2+2)\} = \zeta_{\rm CH_1^2}.$$
 (16)

From Eq. 10,

$$\zeta_{\rm OH} = 2.1456\{3/(n_1^2 + 2)\}^{1/2} \tag{10'}$$

By substituting Eq. 10' in Eqs. 11, 12 and 13, respectively,

$$\zeta_{\rm NH_{*}} = 3.7529 \{3/(n_1^2 + 2)\}^{1/2} \tag{11'}$$

$$\zeta_{\rm Cl} = {\rm ca.} \ 1.4328 \{3/(n_1^2 + 2)\}^{1/2} \tag{12'}$$

$$\zeta_{\rm CH_*} = 0.8087 \{3/(n_1^2 + 2)\}^{1/2}.$$
(13)

From Eqs. 11' and 12',

$$\zeta_{\rm NH_2}\zeta_{\rm Cl} = \text{ca. } 5.3772\{3/(n_1^2+2)\}.$$

This value is of the same order in Eq. 14, 6.8953 $\{3/(n_1^2 + 2)\}$. Moreover, from Eqs. 11' and 13', the value of $\zeta_{NH_*}\zeta_{CH_*}$ is computed as $3.0350\{3/(n_1^2+2)\}$ which is of the

⁸⁸ S. Yamana, Bull. Chem. Soc. Japan 35, 1421 (1962).

29 S. Yamana, Bull. Chem. Soc. Japan 35, 1269 (1962).

³⁰ By using Tables 3 and 6 and Ref. 20,
$$[M]_D^{30}$$
 of (+)-neomenthylamine, $23.5 \equiv \sum [\mu]_D^{30} [\mu]_D^{30} [M]_D^{30}$

of (+)-neomenthylamine $\simeq (CH_3)^{1\beta}\lambda(NH_2)^{3\alpha} + (CH_3)^{1\beta}\lambda(CH_3)^{4\alpha} + (CH_3)^{1\beta}\lambda(CH_3)^{4\alpha} - (CH_3)^{1\beta}\lambda(CH_3)^{\alpha^{\beta}.6} + (CH_3)^{1\beta}\lambda(CH_3)^{\alpha^{\beta}.6} + (CH_3)^{1\beta}\lambda(CH_3)^{\alpha^{\beta}.6} + (NH_2)^{3\alpha}\lambda(CH_3)^{\alpha^{\beta}.6} + (NH_2)^{3\alpha}\lambda(CH_3)^{\alpha^{\beta}.6} + (CH_3)^{4\alpha}\lambda(CH_3)^{\alpha^{\beta}.6} + (CH_3)^{\alpha^{\beta}.6} + (CH_$ + $(CH_3)^{\alpha \delta.d} \lambda (CH_3)^{\delta g.e}$ + $(CH_3)^{\alpha \delta.d} \lambda ch.R$ + $(CH_3)^{\alpha \delta.e} \lambda ch.R$ = $-2.00\{(n_4^2 + 2)/3\}_{K_{NH_2,CH_2}}$ + + $1.55\{(n_4^3 + 2)/3\}\kappa_{\rm NH_2, CH_3}$ = $9.94\{(n_4^3 + 2)/3\}\kappa_{\rm NH_2, CH_3}$

$$\kappa_{\rm NH_2, CH_8} \simeq 2.3642\{3/(n_4^2 + 2)\}$$

same order as that in Eq. 15, $2.3487\{3/(n_1^2 + 2)\}$. These facts indicate that Eq. 7 may be applied and accordingly should be rewritten as

$$\kappa_{\mathbf{X}\mathbf{Y}} \coloneqq \zeta_{\mathbf{X}}\zeta_{\mathbf{Y}}.\tag{7}$$

The values of ζ_i may, of course, vary according to the type of compounds containing the unit group i. One explanation for the value of κ_{XY} being nearly but not exactly equal to the value of $\zeta_X \zeta_Y$ may be due to the incorrect assumption that all the compounds exist in only the Cl conformation. At any rate, the rightness of Eqs. 6 and 7' indicate the availability of the PM-method. On the other hand, from Eq. 13',

$$\zeta_{\rm CH_{5}}^{2} = [0.8087\{3/(n_{1}^{2}+2)\}^{1/2}]^{2} = 0.6540\{3/(n_{1}^{2}+2)\}.$$
 (17)

This value differs from that given in Eq. 16, $-0.1552\{3/(n_1^2 + 2)\}$, and therefore:

$$\kappa_{\rm CH_{3},CH_{3}} \neq \zeta_{\rm CH_{3}}^{2}.$$
 (18)

It is, therefore, apparent that the PM-method is not generally applicable.

The case where the PM-method does not apply

(+)-cis-3-methylcyclohexanol has no plane or centre of symmetry and accordingly it is optically active. $([M]_D = 2 \cdot 2^{\circ 31})$. Both of its $\sum_{X,Y} [\mu]_{D \text{ caled}(XY)}^{20}$ and $\sum_{X,Y} [\mu]_{D \text{ obe}(XY)}^{20}$ are, however, computed as zero. This discrepancy between the observed and the computed values may be due to the neglect of $\{g^{(1)} + \sum_{i} g^{(i)}\}$ in Eq. 2. But the case of Eq. 18 is somewhat different.

Being apparent in Table 1, $\sum_{X,Y} [\mu]_{D \text{ obs}(XY)}^{20}$ of (+)-trans-1,3-dimethylcyclohexane,

$$I = (CH_3)^{1\beta} \lambda (CH_3)^{3\alpha \ 31} = (CH_3)^{1\beta} \times (CH_3)^{3\alpha} \{ (n_1^2 + 2)/3 \} = -9 \cdot 02 \{ (n_1^2 + 2)/3 \} \zeta_{CH_3}^{23\alpha} \}$$
(19)

When using Eq. 17, the value of

$$\sum_{\mathbf{X},\mathbf{Y}} \, [\mu]_{\mathrm{D obs}(\mathbf{X}\mathbf{Y})}^{20}$$

of (+)-*trans*-1,3-dimethylcyclohexane in Eq. 19 becomes -5.9 which is quite different from the observed value of $[M]_D^{20}$, $1.4.^{31}$ This discrepancy between the computed and the observed values is too large to be explained by the neglect of

$$\{g^{(1)} + \sum_{i} g^{(i)}\}$$

in Eq. 2, and accordingly the following explanation should be considered.

The CH₃ group has no hydrogen bonding force and moreover its volume is fairly large. In (+)-trans-1,3-dimethylcyclohexane, therefore, each one of the two CH₃

Ι

³¹ cf. Table 1. ³² Table 4 is used. groups repulses the other H atoms in the molecule. Particularly, the axial CH₃ group (i.e. $(CH_3)^{3\alpha}$) repulses the H^{1\alpha}-atom fairly strongly which is under the butressing effect of the $(CH_3)^{1\beta}$ and this repulsion may cause some degree of distortion of the ring.³³ In this case, the cyclane ring is not symmetrical as regards to one or both of the two CH₃ groups and the partial rotation, $[\mu]_{D\ obs}^{20}$ due to the dynamic coupling effect between the distorted ring and CH₃ group may have a plus value. This can be the principal reason for the reversion of the sign of optical rotation as is also the case with (+)-trans-1,3-dimethylcyclopentane.

³³ R. Bentley, J. Amer. Chem. Soc. 82, 2811 (1960).